
D02 – Ordinary Differential Equations

D02AGF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D02AGF solves the two-point boundary-value problem for a system of ordinary differential equations,
using initial value techniques and Newton iteration; it generalizes D02HAF to include the case where
parameters other than boundary values are to be determined.

2 Specification

SUBROUTINE D02AGF(H, ERROR, PARERR, PARAM, C, N, N1, M1, AUX,
1 BCAUX, RAAUX, PRSOL, MAT, COPY, WSPACE, WSPAC1,
2 WSPAC2, IFAIL)
INTEGER N, N1, M1, IFAIL
real H, ERROR(N), PARERR(N1), PARAM(N1), C(M1,N),
1 MAT(N1,N1), COPY(N1,N1), WSPACE(N,9), WSPAC1(N),
2 WSPAC2(N)
EXTERNAL AUX, BCAUX, RAAUX, PRSOL

3 Description

The routine solves the two-point boundary-value problem by determining the unknown parameters
p1, p2, . . . , pn1

of the problem. These parameters may be, but need not be, boundary values (as they
are in D02HAF); they may include eigenvalue parameters in the coefficients of the differential equations,
length of the range of integration, etc. The notation and methods used are similar to those of D02HAF
and the user is advised to study this first. (There the parameters p1, p2, . . . , pn1

correspond to the
unknown boundary conditions.) It is assumed that we have a system of n first-order ordinary differential
equations of the form:

dyi

dx
= fi(x, y1, y2, . . . , yn), i = 1, 2, . . . , n,

and that derivatives fi are evaluated by a subroutine AUX supplied by the user. The system, including
the boundary conditions given by BCAUX, and the range of integration and matching point, r, given
by RAAUX, involves the n1 unknown parameters p1, p2, . . . , pn1

which are to be determined, and for
which initial estimates must be supplied. The number of unknown parameters n1 must not exceed the
number of equations n. If n1 < n, we assume that (n − n1) equations of the system are not involved in
the matching process. These are usually referred to as ‘driving equations’; they are independent of the
parameters and of the solutions of the other n1 equations. In numbering the equations for the subroutine
AUX, the driving equations must be put last.

The estimated values of the parameters are corrected by a form of Newton iteration. The Newton
correction on each iteration is calculated using a matrix whose (i, j)th element depends on the derivative
of the ith component of the solution, yi, with respect to the jth parameter, pj . This matrix is calculated
by a simple numerical differentiation technique which requires n1 evaluations of the differential system.

4 References

None.

5 Parameters

Users are strongly recommended to read Section 3 and Section 8 in conjunction with this section.

[NP3390/19/pdf] D02AGF.1

D02AGF D02 – Ordinary Differential Equations

1: H — real Input/Output

On entry: H must be set to an estimate of the step size needed for integration, h.

On exit: the last step length used.

2: ERROR(N) — real array Input

On entry: ERROR(i) must be set to a small quantity to control the ith solution component. The
element ERROR(i) is used:

(i) in the bound on the local error in the ith component of the solution yi during integration,
(ii) in the convergence test on the ith component of the solution yi at the matching point in the

Newton iteration.

The elements ERROR(i) should not be chosen too small. They should usually be several orders of
magnitude larger than machine precision.

3: PARERR(N1) — real array Input

On entry: PARERR(i) must be set to a small quantity to control the ith parameter component.
The element PARERR(i) is used:

(i) in the convergence test on the ith parameter in the Newton iteration,
(ii) in perturbing the ith parameter when approximating the derivatives of the components of the

solution with respect to the ith parameter, for use in the Newton iteration.

The elements PARERR(i) should not be chosen too small. They should usually be several orders
of magnitude larger than machine precision.

4: PARAM(N1) — real array Input/Output

On entry: PARAM(i) must be set to an estimate for the ith parameter, pi, for i = 1, 2, . . . ,N1.

On exit: the corrected value for the ith parameter, unless an error has occurred, when it contains
the last calculated value of the parameter (possibly perturbed by PARERR(i)× (1 + |PARAM(i)|)
if the error occurred when calculating the approximate derivatives).

5: C(M1,N) — real array Output

On exit: the solution when M1 > 1 (see below).

If M1 = 1 then the elements of C are not used.

6: N — INTEGER Input

On entry: the total number of differential equations, n.

7: N1 — INTEGER Input

On entry: the number of parameters, n1.

If N1 < N, the last N−N1 differential equations (in the subroutine AUX below) are driving equations
(see Section 3).

Constraint: N1 ≤ N.

8: M1 — INTEGER Input

On entry: determines whether or not the final solution is computed as well as the parameter values.
For

M1 = 1

the final solution is not calculated;
M1 > 1

the final values of the solution at interval (length of range)/(M1− 1) are calculated and stored
sequentially in the array C starting with the values of yi evaluated at the first end-point (see
subroutine RAAUX below) stored in C(1, i).

D02AGF.2 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02AGF

9: AUX — SUBROUTINE, supplied by the user. External Procedure

AUX must evaluate the functions fi (i.e., the derivatives y′
i) for given values of its arguments,

x, y1, . . . , yn, p1, . . . , pn1

Its specification is:

SUBROUTINE AUX(F, Y, X, PARAM)
real F(n), Y(n), X, PARAM(n1)

where n and n1 are the numerical values of N and N1 in the call of D02AGF.

1: F(n) — real array Output
On exit: the value of fi, for i = 1, 2, . . . , n.

2: Y(n) — real array Input
On entry: the value of the argument yi, for i = 1, 2, . . . , n.

3: X — real Input
On entry: the value of the argument x.

4: PARAM(n1) — real array Input
On entry: the value of the argument pi, for i = 1, 2, . . . , n1.

AUX must be declared as EXTERNAL in the (sub)program from which D02AGF is called.
Parameters denoted as Input must not be changed by this procedure.

10: BCAUX — SUBROUTINE, supplied by the user. External Procedure

BCAUX must evaluate the values of yi at the end-points of the range given the values of p1, . . . , pn1
.

Its specification is:

SUBROUTINE BCAUX(G0, G1, PARAM)
real G0(n), G1(n), PARAM(n1)

where n and n1 are the numerical values of N and N1 in the call of D02AGF.

1: G0(n) — real array Output
On exit: the values yi, for i = 1, 2, . . . , n, at the boundary point x0 (see RAAUX below).

2: G1(n) — real array Output
On exit: the values yi, for i = 1, 2, . . . , n, at the boundary point x1 (see RAAUX below).

3: PARAM(n1) — real array Input
On entry: the value of the argument pi, for i = 1, 2, . . . , n.

BCAUX must be declared as EXTERNAL in the (sub)program from which D02AGF is called.
Parameters denoted as Input must not be changed by this procedure.

[NP3390/19/pdf] D02AGF.3

D02AGF D02 – Ordinary Differential Equations

11: RAAUX — SUBROUTINE, supplied by the user. External Procedure

RAAUX must evaluate the end-points, x0 and x1, of the range and the matching point, r, given the
values p1, p2, . . . , pn1

.

Its specification is:

SUBROUTINE RAAUX(X0, X1, R, PARAM)
real X0, X1, R, PARAM(n1)

where n1 is the numerical value of N1 in the call of D02AGF.

1: X0 — real Output
On exit: must contain the left-hand end of the range, x0.

2: X1 — real Output
On exit: must contain the right-hand end of the range x1.

3: R — real Output
On exit: must contain the matching point, r.

4: PARAM(n1) — real array Input
On entry: the value of the argument pi, for i = 1, 2, . . . , n1.

RAAUX must be declared as EXTERNAL in the (sub)program from which D02AGF is called.
Parameters denoted as Input must not be changed by this procedure.

12: PRSOL — SUBROUTINE, supplied by the user. External Procedure

PRSOL is called at each iteration of the Newton method and can be used to print the current values
of the parameters pi, for i = 1, 2, . . . , n1, their errors, ei, and the sum of squares of the errors at the
matching point, r.

Its specification is:

SUBROUTINE PRSOL(PARAM, RES, N1, ERR)
INTEGER N1
real PARAM(N1), RES, ERR(N1)

1: PARAM(N1) — real array Input
On entry: the current value of the parameters pi, for i = 1, 2, . . . , n1.

2: RES — real Input

On entry: the sum of squares of the errors in the parameters,
n1∑

i=1

e2
i .

3: N1 — INTEGER Input
On entry: the number of parameters, n1.

4: ERR(N1) — real array Input
On entry: the errors in the parameters, ei, for i = 1, 2, . . . , n1.

PRSOL must be declared as EXTERNAL in the (sub)program from which D02AGF is called.
Parameters denoted as Input must not be changed by this procedure.

13: MAT(N1,N1) — real array Workspace
14: COPY(N1,N1) — real array Workspace
15: WSPACE(N,9) — real array Workspace

D02AGF.4 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02AGF

16: WSPAC1(N) — real array Workspace
17: WSPAC2(N) — real array Workspace

18: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

Errors detected by the routine:

IFAIL = 1

This indicates that N1 > N on entry, that is the number of parameters is greater than the number
of differential equations.

IFAIL = 2

As for IFAIL = 4 (below) except that the integration failed while calculating the matrix for use in
the Newton iteration.

IFAIL = 3

The current matching point r does not lie between the current end-points x0 and x1. If the values
x0, x1 and r depend on the parameters pi, this may occur at any time in the Newton iteration if
care is not taken to avoid it when coding subroutine RAAUX.

IFAIL = 4

The step length for integration H has halved more than 13 times (or too many steps were needed
to reach the end of the range of integration) in attempting to control the local truncation error
whilst integrating to obtain the solution corresponding to the current values pi. If, on failure, H
has the sign of r − x0 then failure has occurred whilst integrating from x0 to r, otherwise it has
occurred whilst integrating from x1 to r.

IFAIL = 5

The matrix of the equations to be solved for corrections to the variable parameters in the Newton
method is singular (as determined by F03AFF).

IFAIL = 6

A satisfactory correction to the parameters was not obtained on the last Newton iteration employed.
A Newton iteration is deemed to be unsatisfactory if the sum of the squares of the residuals (which
can be printed using PRSOL) has not been reduced after three iterations using a new Newton
correction.

IFAIL = 7

Convergence has not been obtained after 12 satisfactory iterations of the Newton method.

A further discussion of these errors and the steps which might be taken to correct them is given in Section
8.

7 Accuracy

If the process converges, the accuracy to which the unknown parameters are determined is usually close to
that specified by the user; and the solution, if requested, is usually determined to the accuracy specified.

[NP3390/19/pdf] D02AGF.5

D02AGF D02 – Ordinary Differential Equations

8 Further Comments

The time taken by the routine depends on the complexity of the system, and on the number of iterations
required. In practice, integration of the differential equations is by far the most costly process involved.

There may be particular difficulty in integrating the differential equations in one direction (indicated by
IFAIL = 2 or 4). The value of r should be adjusted to avoid such difficulties.

If the matching point r is at one of the end-points x0 or x1 and some of the parameters are used only
to determine the boundary values at this point, then good initial estimates for these parameters are not
required, since they are completely determined by the routine (for example, see p2 in example (i) of
Section 9).

Wherever they occur in the procedure, the error parameters contained in the arrays ERROR and
PARERR are used in ‘mixed’ form; that is ERROR(i) always occurs in expressions of the form
ERROR(i)× (1+ |yi|), and PARERR(i) always occurs in expressions of the form PARERR(i)× (1+ |pi|).
Though not ideal for every application, it is expected that this mixture of absolute and relative error
testing will be adequate for most purposes.

Note that convergence is not guaranteed. The user is strongly advised to provide an output subroutine
PRSOL, as shown in the example (i) of Section 9, in order to monitor the progress of the iteration.
Failure of the Newton iteration to converge (IFAIL = 6 or IFAIL = 7) usually results from poor starting
approximations to the parameters, though occasionally such failures occur because the elements of one or
both of the arrays PARERR or ERROR are too small. (It should be possible to distinguish these cases by
studying the output from PRSOL.) Poor starting approximations can also result in the failure described
under IFAIL = 4 and IFAIL = 5 in Section 6 (especially if these errors occur after some Newton iterations
have been completed, that is, after two or more calls of PRSOL). More frequently, a singular matrix in
the Newton method (monitored as IFAIL = 5) occurs because the mathematical problem has been posed
incorrectly. The case IFAIL = 4 usually occurs because h or r has been poorly estimated, so these values
should be checked first. If IFAIL = 2 is monitored, the solution y1, y2, . . . , yn is sensitive to perturbations
in the parameters pi. Reduce the size of one or more values PARERR(i) to reduce the perturbations.
Since only one value pi is perturbed at any time when forming the matrix, the perturbation which is too
large can be located by studying the final output from PRSOL and the values of the parameters returned
by D02AGF. If this change leads to other types of failure improve the initial values of pi by other means.

The computing time for integrating the differential equations can sometimes depend critically on the
quality of the initial estimates for the parameters pi. If it seems that too much computing time is
required and, in particular, if the values ERR(i) (available on each call of PRSOL) are much larger than
the expected values of the solution at the matching point r, then the coding of the subroutines AUX,
BCAUX and RAAUX should be checked for errors. If no errors can be found, an independent attempt
should be made to improve the initial estimates for PARAM(i).

The subroutine can be used to solve a very wide range of problems, for example:

(a) eigenvalue problems, including problems where the eigenvalue occurs in the boundary conditions;
(b) problems where the differential equations depend on some parameters which are to be determined

so as to satisfy certain boundary conditions (see example (ii) in Section 9);
(c) problems where one of the end-points of the range of integration is to be determined as the point

where a variable yi takes a particular value (see (ii) in Section 9);
(d) singular problems and problems on infinite ranges of integration where the values of the solution

at x0 or x1 or both are determined by a power series or an asymptotic expansion (or a more
complicated expression) and where some of the coefficients in the expression are to be determined
(see example (i) in Section 9); and

(e) differential equations with certain terms defined by other independent (driving) differential
equations.

D02AGF.6 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02AGF

9 Example

For this routine two examples are presented, in Section 9.1 and Section 9.2. In the example programs
distributed to sites, there is a single example program for D02AGF, with a main program:

* D02AGF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)

* .. External Subroutines ..
EXTERNAL EX1, EX2

* .. Executable Statements ..
WRITE (NOUT,*) ’D02AGF Example Program Results’
CALL EX1
CALL EX2
STOP
END

The code to solve the two example problems is given in the subroutines EX1 and EX2, in Section 9.1.1
and Section 9.2.1 respectively.

9.1 Example 1

To find the solution of the differential equation

y′′ =
y3 − y′

2x

on the range 0 ≤ x ≤ 16, with boundary conditions y(0) = 0.1 and y(16) = 1/6.

We cannot use the differential equation at x = 0 because it is singular, so we take the truncated series
expansion

y(x) =
1
10
+ p1

√
x

10
+

x

100
near the origin (which is correct to the number of terms given in this case). Where p1 is one of the
parameters to be determined. We choose the range as [0.1,16] and setting p2 = y′(16), we can determine
all the boundary conditions. We take the matching point to be 16, the end of the range, and so a good
initial guess for p2 is not necessary. We write y = Y(1), y′ = Y(2), and estimate p1 = PARAM(1) = 0.2,
p2 = PARAM(2) = 0.0.

9.1.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

*
SUBROUTINE EX1

* .. Parameters ..
INTEGER N, M1
PARAMETER (N=2,M1=6)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalars in Common ..
INTEGER IPRINT

* .. Local Scalars ..
real DUM, H, R, X, X1
INTEGER I, IFAIL, J, N1

* .. Local Arrays ..
real C(M1,N), COPY(N,N), ERROR(N), G(N), G1(N),

[NP3390/19/pdf] D02AGF.7

D02AGF D02 – Ordinary Differential Equations

+ MAT(N,N), PARAM(N), PARERR(N), WSPACE(N,9)
* .. External Subroutines ..

EXTERNAL AUX1, BCAUX1, D02AGF, PRSOL, RNAUX1
* .. Intrinsic Functions ..

INTRINSIC real
* .. Common blocks ..

COMMON /BLOCK1/IPRINT
* .. Executable Statements ..

WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Case 1’
WRITE (NOUT,*)

* * Set IPRINT to 1 to obtain output from PRSOL at each iteration *
IPRINT = 0
PARAM(1) = 0.2e0
PARAM(2) = 0.0e0
N1 = 2
H = 0.1e0
PARERR(1) = 1.0e-5
PARERR(2) = 1.0e-3
ERROR(1) = 1.0e-4
ERROR(2) = 1.0e-4
IFAIL = 1

*
CALL D02AGF(H,ERROR,PARERR,PARAM,C,N,N1,M1,AUX1,BCAUX1,RNAUX1,

+ PRSOL,MAT,COPY,WSPACE,G,G1,IFAIL)
*

IF (IFAIL.EQ.0) THEN
WRITE (NOUT,*) ’Final parameters’
WRITE (NOUT,99998) (PARAM(I),I=1,N1)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Final solution’
WRITE (NOUT,*) ’X-value Components of solution’
CALL RNAUX1(X,X1,R,PARAM)
H = (X1-X)/5.0e0
DO 20 I = 1, 6

DUM = X + real(I-1)*H
WRITE (NOUT,99997) DUM, (C(I,J),J=1,N)

20 CONTINUE
ELSE

WRITE (NOUT,99999) ’IFAIL = ’, IFAIL
END IF
RETURN

*
99999 FORMAT (1X,A,I3)
99998 FORMAT (1X,3e16.6)
99997 FORMAT (1X,F7.2,3e13.4)

END
*

SUBROUTINE AUX1(F,Y,X,PARAM)
* .. Scalar Arguments ..

real X
* .. Array Arguments ..

real F(2), PARAM(2), Y(2)
* .. Executable Statements ..

F(1) = Y(2)
F(2) = (Y(1)**3-Y(2))/(2.0e0*X)
RETURN

D02AGF.8 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02AGF

END
*

SUBROUTINE RNAUX1(X,X1,R,PARAM)
* .. Scalar Arguments ..

real R, X, X1
* .. Array Arguments ..

real PARAM(2)
* .. Executable Statements ..

X = 0.1e0
X1 = 16.0e0
R = 16.0e0
RETURN
END

*
SUBROUTINE BCAUX1(G,G1,PARAM)

* .. Array Arguments ..
real G(2), G1(2), PARAM(2)

* .. Local Scalars ..
real Z

* .. Intrinsic Functions ..
INTRINSIC SQRT

* .. Executable Statements ..
Z = 0.1e0
G(1) = 0.1e0 + PARAM(1)*SQRT(Z)*0.1e0 + 0.01e0*Z
G(2) = PARAM(1)*0.05e0/SQRT(Z) + 0.01e0
G1(1) = 1.0e0/6.0e0
G1(2) = PARAM(2)
RETURN
END

*

9.1.2 Program Data

None.

9.1.3 Program Results

D02AGF Example Program Results

Case 1

Final parameters
0.464269E-01 0.349429E-02

Final solution
X-value Components of solution

0.10 0.1025E+00 0.1734E-01
3.28 0.1217E+00 0.4180E-02
6.46 0.1338E+00 0.3576E-02
9.64 0.1449E+00 0.3418E-02

12.82 0.1557E+00 0.3414E-02
16.00 0.1667E+00 0.3494E-02

[NP3390/19/pdf] D02AGF.9

D02AGF D02 – Ordinary Differential Equations

9.2 Example 2

To find the gravitational constant p1 and the range p2 over which a projectile must be fired to hit the
target with a given velocity. The differential equations are

y′ = tanφ

v′ =
−(p1 sinφ+ 0.00002v2)

v cosφ

φ′ =
−p1

v2

on the range 0 < x < p2 with boundary conditions

y = 0, v = 500, φ = 0.5 at x = 0
y = 0, v = 450, φ = p3 at x = p2.

We write y = Y(1), v = Y(2), φ = Y(3), and we take the matching point r = p2. We estimate
p1 = PARAM(1) = 32, p2 = PARAM(2) = 6000 and p2 = PARAM(3) = 0.54 (though this estimate is
not important).

9.2.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

*
SUBROUTINE EX2

* .. Parameters ..
INTEGER N, M1
PARAMETER (N=3,M1=6)
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalars in Common ..
INTEGER IPRINT

* .. Local Scalars ..
real DUM, H, R, X, X1
INTEGER I, IFAIL, J

* .. Local Arrays ..
real C(M1,N), COPY(N,N), ERROR(N), G(N), G1(N),

+ MAT(N,N), PARAM(N), PARERR(N), WSPACE(N,9)
* .. External Subroutines ..

EXTERNAL AUX2, BCAUX2, D02AGF, PRSOL, RNAUX2
* .. Intrinsic Functions ..

INTRINSIC real
* .. Common blocks ..

COMMON /BLOCK1/IPRINT
* .. Executable Statements ..

WRITE (NOUT,*)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Case 2’
WRITE (NOUT,*)

* * Set IPRINT to 1 to obtain output from PRSOL at each iteration *
IPRINT = 0
H = 10.0e0
PARAM(1) = 32.0e0
PARAM(2) = 6000.0e0
PARAM(3) = 0.54e0
PARERR(1) = 1.0e-5
PARERR(2) = 1.0e-4

D02AGF.10 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02AGF

PARERR(3) = 1.0e-4
ERROR(1) = 1.0e-2
ERROR(2) = 1.0e-2
ERROR(3) = 1.0e-2
IFAIL = 1

*
CALL D02AGF(H,ERROR,PARERR,PARAM,C,N,N,M1,AUX2,BCAUX2,RNAUX2,

+ PRSOL,MAT,COPY,WSPACE,G,G1,IFAIL)
*

IF (IFAIL.EQ.0) THEN
WRITE (NOUT,*) ’Final parameters’
WRITE (NOUT,99998) (PARAM(I),I=1,N)
WRITE (NOUT,*)
WRITE (NOUT,*) ’Final solution’
WRITE (NOUT,*) ’X-value Components of solution’
CALL RNAUX2(X,X1,R,PARAM)
H = (X1-X)/5.0e0
DO 20 I = 1, 6

DUM = X + real(I-1)*H
WRITE (NOUT,99997) DUM, (C(I,J),J=1,N)

20 CONTINUE
ELSE

WRITE (NOUT,99999) ’IFAIL = ’, IFAIL
END IF
RETURN

*
99999 FORMAT (1X,A,I3)
99998 FORMAT (1X,3e16.6)
99997 FORMAT (1X,F7.0,3e13.4)

END
*

SUBROUTINE AUX2(F,Y,X,PARAM)
* .. Scalar Arguments ..

real X
* .. Array Arguments ..

real F(3), PARAM(3), Y(3)
* .. Local Scalars ..

real C, S
* .. Intrinsic Functions ..

INTRINSIC COS, SIN
* .. Executable Statements ..

C = COS(Y(3))
S = SIN(Y(3))
F(1) = S/C
F(2) = -(PARAM(1)*S+0.00002e0*Y(2)*Y(2))/(Y(2)*C)
F(3) = -PARAM(1)/(Y(2)*Y(2))
RETURN
END

*
SUBROUTINE RNAUX2(X,X1,R,PARAM)

* .. Scalar Arguments ..
real R, X, X1

* .. Array Arguments ..
real PARAM(3)

* .. Executable Statements ..
X = 0.0e0
X1 = PARAM(2)
R = PARAM(2)

[NP3390/19/pdf] D02AGF.11

D02AGF D02 – Ordinary Differential Equations

RETURN
END

*
SUBROUTINE BCAUX2(G,G1,PARAM)

* .. Array Arguments ..
real G(3), G1(3), PARAM(3)

* .. Executable Statements ..
G(1) = 0.0e0
G(2) = 500.0e0
G(3) = 0.5e0
G1(1) = 0.0e0
G1(2) = 450.0e0
G1(3) = PARAM(3)
RETURN
END

*
SUBROUTINE PRSOL(PARAM,RESID,N1,ERR)

* .. Parameters ..
INTEGER NOUT
PARAMETER (NOUT=6)

* .. Scalar Arguments ..
real RESID
INTEGER N1

* .. Array Arguments ..
real ERR(N1), PARAM(N1)

* .. Scalars in Common ..
INTEGER IPRINT

* .. Local Scalars ..
INTEGER I

* .. Common blocks ..
COMMON /BLOCK1/IPRINT

* .. Executable Statements ..
IF (IPRINT.NE.0) THEN

WRITE (NOUT,99999) ’Current parameters ’, (PARAM(I),I=1,N1)
WRITE (NOUT,99998) ’Residuals ’, (ERR(I),I=1,N1)
WRITE (NOUT,99998) ’Sum of residuals squared ’, RESID
WRITE (NOUT,*)

END IF
RETURN

*
99999 FORMAT (1X,A,6(e14.6,2X))
99998 FORMAT (1X,A,6(e12.4,1X))

END

9.2.2 Program Data

None.

D02AGF.12 [NP3390/19/pdf]

D02 – Ordinary Differential Equations D02AGF

9.2.3 Program Results

Case 2

Final parameters
0.323729E+02 0.596317E+04 -0.535231E+00

Final solution
X-value Components of solution

0. 0.0000E+00 0.5000E+03 0.5000E+00
1193. 0.5298E+03 0.4516E+03 0.3281E+00
2385. 0.8076E+03 0.4203E+03 0.1231E+00
3578. 0.8208E+03 0.4094E+03 -0.1032E+00
4771. 0.5563E+03 0.4200E+03 -0.3296E+00
5963. 0.0000E+00 0.4500E+03 -0.5352E+00

[NP3390/19/pdf] D02AGF.13 (last)

